
Async Tree Pattern

Guseyn Ismayylov

July 2018

1 Introduction

Async Tree Pattern is a design pattern, the main purpose of which is to
provide a way to write declarative code in the asynchronous environment via
async tree, which is the core idea of this pattern.

2 Declarative vs Imperative

The conception of the async tree was created with assumption that declar-
ative programming is much better than imperative style of writing code for
big programs and systems. Declarative code is more readable, extensible and
maintainable in general.

Here it will be shown the difference between these two approaches by small
example. Let’s consider the following imperative code:

// Imperative, pseudocode

user = getUserFromDb(userId)

account = user.createNewAccount(accountInfo)

user.saveAccount(account)

It can be written in the declarative style:

// Declarative, pseudocode

SavedAccount(

CreatedAccount(

UserFromDb(userId), accountInfo

)

).call()

The example is quite small to demonstrate why declarative programming
is preferable. Nevertheless, you can see that declarative code always shows
the result of program execution and what it requires to get this result. For
readability it’s more important to be able to see what result you get, not how
exactly you get it.

1

3 Composition of async objects

The last example with the declarative code is actually a composition of
async objects.

Async object is an object that represents(computes) some other(but sim-
ilar in terms of logic) object. Also async object can represent primitive type of
data.

So, for example, SavedAccount, CreatedAccount are async objects because
they represent Account, which is simple object. UserFromDb is also an async
object, it represents simple object User.

Async object also can be defined as a wrapper around some async call or
sync call that computes its representation (why not to use separate abstraction
like sync object for sync calls? well, it will be described later).

Every async object can be constructed by other async objects or represen-
tations of these async objects. For example, SavedAccount can be created by
CreatedAccount or any other async object that represents Account. Obviously,
it can be created by Account itself.

So, composition of async objects can also contain simple objects and primi-
tives.

That’s the main idea of the Async Tree Pattern: to provide flexible way to
create composition of objects via their representations.

4 Asynchronous environment and callback hell

The implementation of the Async Tree Pattern will be described for Node.js.
The choice is very simple because Node.js is the most popular and stable asyn-
chronous event driven runtime and it performs well.

If you’re familiar with Node.js and how it works, you might know about
callback hell problem. Callbacks is the main feature and problem in Node.js.
Although it’s a beautiful abstraction, it decreases readability of a program while
it grows up.

Actually, callback hell is one of the reasons why Async Tree Pattern was
created.

There are relatively new conceptions in JavaScript like Promises and async/
await. But in my opinion, these abstractions are not suitable for composable
and declarative code.

Node.js is a set of modules with static asynchronous methods which don’t
provide . And static methods with callbacks don’t allow to use results of their
execution for other operations in the explicit way. The more asynchronous calls
in the code, the harder to control flow of data there.

Let’s say we want to write content to a file that has been read from another
one. And all these operations are asynchronous, of course. So, instead of writing
something like this:

fs.readFile('./../file1.txt', 'utf8', (err, result) => {

if (err != null) {

2

throw err

}

fs.writeFile('/../file2.txt', result, (err) => {

if (err != null) {

throw err

}

})

})

we can design our code in the following style:

new WrittenFile(

'./../file2.txt',

new ReadContentFromFile('./../file1.txt', 'utf8')

).call()

As you can see, we use async objects instead of async calls and their represen-
tations as results of operations they correspond to. So, ReadContentFromFile
represents string - content from a file, which is the result of the async call
fs.readFile. And WrittenFile represents a file that has been written with
some content. Although fs.WriteFile does not return anything, we can use
WrittenFile as a file for other operations if it’s needed.

5 Features of the Async Tree Pattern

5.1 Flexibility

The main question needs to be answered for turning asynchronous code into
the OOP code is ”What is the main point of doing async call?”

Well, it’s simple: receive a result from an I/O operation or just handle an
error in case if something fails. That means that we can represent an I/O call
as a result that can be received in the future, and once it’s ready it can be used
as argument for another async call.

Let’s return back to the example with reading and writing files. Objects
WrittenFile and ReadContentFromFile are async objects, and they have the
same arguments that their corresponding async calls have. So, here the first
argument of WrittenFile is a path of a file we want to write content to, second
one is the content we want to write. And as you noticed, second argument is
represented here as ReadContentFromFile. It means that method call() of
WrittenFile invoke first ReadContentFromFile and use its result as content
for WrittenFile.

It’s good, but it could be better. For making this declarative abstraction
flexible we need a possibility to use either ready results or async objects that
represent these results as arguments for construction the whole composition.

For example, we can use second argument of WrittenFile as a string:

3

new WrittenFile('./../file2.txt', 'content to write').call()

or use the fist argument as something that has been read from another file:

/* here file3.txt contains information

for the first argument of WrittenFile: './../file2.txt' */

new WrittenFile(

new ReadContentFromFile('./../file3.txt', 'utf8'),

new ReadContentFromFile('./../file1.txt', 'utf8')

).call()

or even just use every async object independently:

new ReadContentFromFile('./../file.txt', 'utf8').call()

That’s how we can get rid of callbacks.

5.2 Events

There is another abstraction in Node that must be considered. And this is
events.

Let’s look at the most popular example in Node:

http.createServer((request, response) => {

// send back a response every time you get a request

}).listen(8080, '127.0.0.1', () => {

'server is listening on 127.0.0.1:8080'

})

Here method createServer uses request listener as argument, which actu-
ally works like an event: on every request it provides a response. Unlike simple
async call, event is never finished and it’s being invoked every time when it’s
needed.

It can be rewritten in the following declarative way:

new LoggedListeningServer(

new ListeningServer(

new CreatedServer(

new RequestResponseEvent()

), 8080, '127.0.0.1'

), 'server is listening on 127.0.0.1:8080'

).call()

As you can see, RequestResponseEvent is a node of the async tree that
represents request listener, but it’s not a simple argument or async object.
RequestResponseEvent implements Event interface and it needs to be treated
in a special way, so it requires more flexibility of the whole system. But we can
create Event via AsyncObject (it’ll described in section 9).

4

5.3 Sequence of the async compositions

Sometimes it’s not so easy to make a proper composition of async objects(or
just any kind of objects), mostly because sometimes we need to do completely
different things at different moments. And if you try to combine these things in
one async tree, you’ll probably fail. So it would be very useful to be able call
one async tree after another one. For example,

new EqualAssertion(

new ReadContentFromFile(

new WrittenFile('./text.txt', 'content')

), 'content'

).after(

RemovedFile('./text.txt')

).call()

It’s a test that checks that read content from a file is equal to the content
that has been written into there. After test the file can be removed to free space
on a disk.

Method after can be used only once for every async tree:

// RIGHT WAY, pseudocode

AsyncTree1().after(

AsyncTree2().after(

AsyncTree3().after(...)

)

)

// WRONG WAY, pseudocode

AsyncTree1().after(

AsyncTree2()

).after(

AsyncTree3()

).after(...)

5.4 Cache mechanism

Consider the following example with async tree:

new SavedNewAccountOfUser(

new RetrievedUser(userId),

new RetrievedOldAccountOfUser(

new RetrievedUser(userId)

)

).call()

5

So, here we try to save new account for user that based(somehow) on its old
one. And as you can see, we retrieve user here twice. RetrievedUser might be
a quite expensive operation, so we don’t want to do it more than one time. So,
what would do you do here?

Well, you definitely don’t want to do something like this:

const retrievedUser = new RetrievedUser(userId)

new SavedNewAccountOfUser(

retrievedUser,

new RetrievedOldAccountOfUser(

retrievedUser

)

).call()

Because it does not change anything. All these objects are asynchronous,
they are not simple procedures, and all them will be invoked only when they
are needed in the async tree. It means that the results they produce could be
received and used only in the inner scope of the tree.

Another thing you must consider here is which of two RetrievedUser will
be invoked first, so that you can write its result into the cache for using it for
the second RetrievedUser.

Here sequence of the async compositions can help to create declarative con-
struction for caching:

new RetrievedUser(userId).as('user')

.after(

new SavedNewAccountOfUser(

as('user'),

new RetrievedOldAccountOfUser(

as('user')

)

)

).call()

Every async object can has as(key) method, which says to the async object
that it must save its represented value(result) into the cache with the specified
key. If as(key) method is used as independent(separate) function, it returns
async object that represents value from the cache with the specified key.

6 Implementation of the Async Tree

6.1 How it works

The solution is quite simple. First of all, we need to replace async/sync
calls with async objects for creating a composition of the async objects. The
composition of these async objects need to be converted to an ”asynchronous
tree” for making tree traversal from its leaves to the root.

6

So, let’s say we have following composition of async objects:

//Pseudocode

A1 (

A2 (

a1, a2

),

A3 (

a3, A4(

a4, a5

)

),

A5()

)

where A1, A2, A3, A4, A5 are async objects and a1, a2, a3, a4, a5 are just simple
arguments. Then corresponding async tree for this composition would be:

7

Every node has child nodes as their arguments. So, a1, a2, a3, a4, a5, A5
are leaves of the tree and they are being called first at the same time. When
their results are received, their parents will be ready to be invoked (a1, a2, a3,
a4, a5 are already ready in that case, so we just add them to the arguments of
their parent).

A1 is a root of the tree, so we invoke it last. A2 never waits for the results
of A3 or A4, because A2 just does not need them. But A3 waits for the result of
A4, and A1 waits for the results of A2, A3 and A5.

So, the sequence of the calls would look like this:

a1, a2, a3, a4, a5, A5 // at the same time

A2, A4 // at the same time

A3

A1

You might ask ”What if I need to use the result that is represented by the
A1, how can I do that?”. Well, it’s very simple: you just wrap it with another
async object that processes representation of the A1.

7 Program implementation

For implementation Aync Tree Pattern we need following classes(abstractions):
AsyncObject, AsyncTree, TreeNode, SimpleTreeNode, AsyncTreeNode, NotDefinedAsyncTreeNode,
Event, As.

7.1 AsyncObject

AsyncObject has three types of methods: methods that must be(or can be)
implemented by classes that extend it, methods that can be used in declarative
composition and methods that are not allowed to be overridden(for internal
usage). Also AsyncObject has constructor.

Constructor

/*

args: any type (including AsyncObject)

*/

constructor (...args) {

this.args = args

this.cache = {}

this.next = undefined

this.asKey = undefined

}

...args can be any type, including AsyncObject. Argument next points to
the next async tree if it set by after method(by default it’s undefined). Also

8

every async object has cache that is simple map. It’s needed because cache
must be visible in the global scope. Field asKey is used as a key for saving
representation(computing result) of the async object into the cache if method
as is invoked.

7.1.1 Methods for implementing

asyncCall () {

throw new Error('asyncCall or syncCall must be defined')

}

syncCall () {

throw new Error('asyncCall or syncCall must be defined')

}

onError (error) {

throw error

}

onResult (result) {

return result

}

/*

Works only if this.continueAfterFail returns true

(in that case this.onError and this.onResult will be ignored),

*/

onErrorAndResult (error, result) {

return error || result

}

/*

If it returns true, then this.onError

and this.onResult will be ignored.

Represented result of this object

will be returned by this.onErrorAndResult.

*/

continueAfterFail () {

return false

}

callbackWithError () {

return true

9

}

Either of methods asyncCall or syncCall must be defined(implemented)
in extended classes. If both of them are implemented then only asyncCall will
be invoked. asyncCall is used for async calls, so it must return function of
the async call. syncCall is used for synchronous processing, so it must return
blocking function. The entire logic of using these methods will be shown in the
AsyncTreeNode class.

Method onError is used as a handler for errors that might happen in the
async calls. And onResult is used for post processing of the result of async/sync
call.

If continueAfterResult returns true, then onError and onResult will be
ignored, and the represented result(or an error) of async object will be returned
by onErrorAndResult.

Method callbackWithError must return true if an error is expected in the
callback of corresponding async call, otherwise it must return false.

7.1.2 Methods from public API

call () {

this.propagateCache(this)

new AsyncTree(this).create().call()

}

after (asyncObject) {

this.next = asyncObject

return this

}

as (key) {

this.asKey = key

return this

}

Method call is being invoked only of async object that is root of async tree.
It propagates cache among all fields, so it will be able to access cache in every
async object in the composition. The main point of this method is to create an
async tree with root as this async object and invoke it.

Method after is used for setting next async tree that is being invoked after
the current one and returns this async object. Obviously, this method can be
used only for the root async object.

Method as is used for setting key for caching. It returns the async object
with set key.

10

7.1.3 Internal methods (not for overriding)

iterateArgs (func) {

this.args.forEach((arg, index) => {

func(arg, index, this.isAsyncObject(arg), this.isEvent(arg))

})

}

hasNoArgs () {

return this.args.length === 0

}

readyToBeInvoked (readyResultsNum) {

return this.args.length === readyResultsNum

}

callNextTreeIfExists () {

if (this.next) {

this.propagateCache(this.next)

new AsyncTree(this.next).create().call()

}

}

propagateCache (arg) {

if (this.isAsyncObject(arg)) {

arg.withCache(this.cache)

arg.iterateArgs(arg => this.propagateCache(arg))

}

}

withCache (cache) {

this.cache = cache

return this

}

saveValueIntoCacheIfNeeded (value) {

if (this.asKey) {

this.cache[this.asKey] = value

}

return this

}

isAsyncObject (arg) {

return this.classChain(arg).indexOf('AsyncObject') !== -1

11

}

isEvent (arg) {

return this.classChain(arg).indexOf('Event') !== -1

}

classChain (obj, chain) {

if (!chain) {

chain = []

}

if (typeof obj === 'function') {

if (!obj.name || obj === Object) {

return chain

}

return this.classChain(

Object.getPrototypeOf(obj),chain.concat(obj.name)

)

}

if (typeof obj === 'object' && obj !== null) {

return this.classChain(obj.constructor, chain)

}

return chain

}

12

Method iterateArgs is a proxy method, which avoid using getters and
setters for processing ...args of the async object.

Method hasNoArgs checks if async object encapsulates anything.
Method readyToBeInvoked compares number of ready results that are com-

puted by child nodes(...args) and number of all ..args. If they are equal,
that means that we can compute result of this async object.

Method callNextTreeIfExists is used for calling next async tree if it exists.
Method propagateCache is a recursive method that share the cache object

among all async objects in the composition(or in the sequence of the async
compositions).

Method withCache attaches cache to this async object and returns it.
Mathod saveValueIntoCacheIfNeeded save represented value of this async

object into the cache, if this object has set asKey.
Methods isAsyncObject and isEvent check if argument extends AsyncObject

and Event respectively. Both of them use method classChain

7.2 AsyncTree

We need to convert async composition to the AsyncTree to be able to use
results of the async objects in this composition that are being computed by the
corresponding async/sync calls. AsyncTree has constructor, public and private
methods.

7.2.1 Constructor

/*

rootField: AsyncObject

*/

constructor (rootField) {

this.rootField = rootField

this.nodes = []

}

Constructor has only one argument - rootField, which is AsyncObject that
wraps all other async objects in the composition. Also constructor encapsulates
nodes, which is array that can contain elements with AsyncTreeNode type and
SimpleTreeNode type.

7.2.2 Public methods

create () {

this.createAsyncTreeNode(

this.rootField, new NotDefinedAsyncTreeNode(), 0

)

return this

}

13

call () {

let leaves = this.nodes.filter(node => {

return node.isLeaf()

})

leaves.forEach(leaf => {

leaf.call()

})

}

Method create use private recursive method createAsyncTreeNode to cre-
ate a root that creates other nodes later recursively. The method returns created
AsyncTree.

Method call filters nodes to call leaves of this async tree. Then these
leaves will call other nodes as it explained in the section 6.1.

7.2.3 Private methods

createChildNodes (field, parent) {

field.iterateArgs((argAsField, index, isAsyncObject, isEvent) => {

if (isAsyncObject) {

this.createAsyncTreeNode(argAsField, parent, index)

} else if (isEvent) {

this.createSimpleTreeNode((...eventArgs) => {

argAsField.body(...eventArgs)

}, parent, index)

} else {

this.createSimpleTreeNode(argAsField, parent, index)

}

})

}

createAsyncTreeNode (field, parent, index) {

let asyncTreeNode = new AsyncTreeNode(field, parent, index)

this.nodes.push(asyncTreeNode)

this.createChildNodes(field, asyncTreeNode)

}

createSimpleTreeNode (field, parent, index) {

let treeNode = new SimpleTreeNode(field, parent, index)

this.nodes.push(treeNode)

}

The main point of these private methods to create all nodes for this async
tree. nodes can be two types: AsyncTreeNode and SimpleTreeNode. AsyncTreeNode
is used for async objects in the composition that is being converted to the async

14

tree. SimpleTreeNode is used for simple objects, primitives and events. Every
node encapsulates three arguments: field - the element in the async composi-
tion that is being wrapped around by this node, parent is a node that is parent
for this node and index that points to the position of this node in the list of
child nodes of the parent node.

7.3 TreeNode

TreeNode is an abstract class(or interface) that has constructor, methods
that must be implemented in the extended classes(AsyncTreeNode, SimpleTreeNode)
and method, which is not allowed to be overridden.

7.3.1 Constructor

/*

field: just some value (argument), also can be Event

parent: AsyncTreeNode

position: int

*/

constructor (field, parent, position) {

this.field = field

this.parent = parent

this.position = position

}

Constructor has three arguments and they have the same meaning that it’s
been explained for arguments of AsyncTreeNode and SimpleTreeNode.

7.3.2 Methods for implementation

call (result) {

result = result || ''

throw new Error(

`call must be overridden and insert result ${result} into parent node`

)

}

isLeaf () {

throw new Error('isLeaf must be overridden')

}

Method call is used for retrieving result for this node and calling parent
node if all needed results are ready.

Method isLeaf is used for checking if this node is a leaf in the async tree
that contains this node.

15

7.3.3 Internal functionality (not for overriding)

callParent (result) {

this.parent.insertArgumentResult(this.position, result)

if (this.parent.readyToBeInvoked()) {

this.parent.call()

}

}

Method callParent save result from this node by the position it has. And
if all results are set, parent is being invoked.

7.4 AsyncTreeNode

AsyncTreeNode is an implementation of the TreeNode. And it has some
additional public and private methods.

7.4.1 Constructor

/*

field: AsyncObject

parent: AsyncTreeNode or NotDefinedAsyncTree

position: int

*/

constructor (field, parent, position) {

super(field, parent, position)

this.argResults = []

this.readyResultsNum = 0

}

The argument field of this class can be only AsyncObject. Also con-
structor stores the results that have been retrieved from the child nodes in the
argResults array. The parameter readResultsNum is number of results that
are ready to be used for the parent node.

16

7.4.2 Public methods

call () {

let args = this.argResults

try {

let asyncCall = this.field.asyncCall()

if (this.field.callbackWithError()) {

this.invokeAsyncCallWithError(asyncCall, ...args)

} else {

this.invokeAsyncCallWithoutError(asyncCall, ...args)

}

} catch (error) {

if (error.message !== 'asyncCall or syncCall must be defined') {

if (this.field.continueAfterFail()) {

this.field.onErrorAndResult(error)

} else {

this.field.onError(error)

}

} else {

let syncCall = this.field.syncCall()

this.invokeSyncCall(syncCall, ...args)

}

}

}

isLeaf () {

return this.field.hasNoArgs()

}

readyToBeInvoked () {

return this.field.readyToBeInvoked(this.readyResultsNum)

}

hasParent () {

return this.parent instanceof AsyncTreeNode

}

insertArgumentResult (position, result) {

this.argResults[position] = result

this.readyResultsNum += 1

}

Method call checks if async call is defined, if yes then it get result from
it. If async call is not defined it checks if sync call is defined and use it for
retrieving the result it provides. If some error happens in the definition of the
async/sync call, it will be handled by the onError method of the async object(it
just throws the error by default).

17

Method isLeaf checks if this node is a leaf by the number of arguments of
this field. If this number is zero, it’s a leaf.

Method readyToBeInvoked checks if all results from the child nodes are
ready by the readyResultsNum.

Method hasParent checks if this node has a parent node. Only AsyncTreeNode

can has child node.
Method insertArgumentResult inserts a result of one of the child nodes to

the argResults and increments readyResultsNum.

7.4.3 Private methods

invokeAsyncCallWithError (asyncCall, ...args) {

asyncCall(...args, (error, ...results) => {

if (!this.processedError(error, ...results)) {

this.processedResult(...results)

}

})

}

invokeAsyncCallWithoutError (asyncCall, ...args) {

asyncCall(...args, (...results) => {

this.processedResult(...results)

})

}

invokeSyncCall (syncCall, ...args) {

try {

let syncCallResult = syncCall(...args)

this.processedResult(syncCallResult)

} catch (error) {

this.processedError(error)

}

}

18

processedError (error, ...results) {

let isProcessed = false

// It's not possible to get rid of null here :(

if (error != null) {

if (this.field.continueAfterFail()) {

let totalResult = this.field.onErrorAndResult(error, ...results)

this.field.saveValueIntoCacheIfNeeded(totalResult)

if (this.hasParent()) {

super.callParent(totalResult)

} else {

this.field.callNextTreeIfExists()

}

} else {

this.field.onError(error)

}

isProcessed = true

}

return isProcessed

}

processedResult (...results) {

let totalResult

if (this.field.continueAfterFail()) {

totalResult = this.field.onErrorAndResult(null, ...results)

} else {

totalResult = this.field.onResult(...results)

}

this.field.saveValueIntoCacheIfNeeded(totalResult)

if (this.hasParent()) {

super.callParent(totalResult)

} else {

this.field.callNextTreeIfExists()

}

return true

}

Method invokeAsyncCallWithError invokes defined async call of the field,
which is an async object with a callback that uses an error argument.

Method invokeAsyncCallWithoutError does the same that invokeAsyncCallWithError
does but it uses a callback without error parameter.

Method invokeSyncCall invokes defined sync call of the field, which is an
async object(although it defines sync call).

Methods processedResult and processedError are used for processing
and post processing the result or an error from the async/sync call considering
the configuration of the field. These methods also decide what to save into the

19

cache if it’s needed and invoke next async tree if it exists.

7.5 SimpleTreeNode

SimpleTreeNode also implements(or extends) TreeNode.

7.5.1 Constructor

/*

field: simple argument (not AsyncObject, can be Event)

parent: AsyncTreeNode or NotDefinedAsyncTree

position: int

*/

constructor (field, parent, position) {

super(field, parent, position)

}

Unlike AsyncTreeNode, SimpleTreeNode has a field that is just simple ob-
ject or primitive. And as it’s been said before, parent is always AsyncTreeNode.

7.5.2 Public methods

call () {

super.callParent(this.field)

}

isLeaf () {

return true

}

The main point of the method call is to call parent node, if it’s ready to
be invoked.

SimpleTreeNode is always a leaf because it cannot be a parent node, so
method isLeaf always returns true.

7.6 NotDefinedAsyncTreeNode

The root of a tree has no parent node and it’s not good to use null for
this declaration. It’s better to create an object that indicates that node is not
defined.

20

7.7 Event

Event is an interface that provides only one method: body(...args) that
must be implemented by the extended classes. The main purpose of this inter-
face is to replace functions of events(or listeners). Event is not an AsyncObject,
but it represents function of some event. But you cannot use AsyncObject

that represents some Event instead of the Event. In that case you can use
AsyncObject that represents some function. Actually, you can use a function
in the async composition instead of Event, but for readability it’s better to use
Event.

body (...args) {

throw new Error(

'Method body must be overridden'

)

}

7.8 As

As is an AsyncObject that represents a result from the cache by the key.

7.8.1 Implementation

constructor (key) {

super(key)

}

syncCall () {

return (key) => {

let result = this.cache[key]

if (result === undefined) {

throw new Error(

`There is no value that is cached with key: ${key}`

)

}

return result

}

}

Since cache is visible among all async objects and As is an AsyncObject,
we can use it in the definition of the sync call. For more readability it’s better
to use function as that returns As:

module.exports = (key) => {

return new As(key)

}

21

8 How to create AsyncObject

8.1 For async call

Let’s take async call read from the fs module in Node. It has following
signature:

fs.read(fd, buffer, offset, length, position,

(bytesRead, buffer) => {

// handle bytesRead and buffer

}

)

As you can see we have two things to handle in the callback: bytesRead,
buffer. But AsyncObject must represent only one object. So you can create an
object that contains everything that callback provides: {bytesRead, buffer}

or you can choose something that’s needed for you. Let’s say we need only a
buffer from the callback, so we would name our AsyncObject something like
ReadBufferByFD.

Let’s look on how it must be implemented:

const AsyncObject = require('./AsyncObject')

const fs = require('fs')

// Represented result is buffer

class ReadBufferByFD extends AsyncObject {

constructor (fd, buffer, offset, length, position) {

super(fd, buffer, offset, length, position)

}

asyncCall () {

return fs.read

}

onResult (bytesRead, buffer) {

return buffer

}

}

First of all, we extends ReadBufferByFD from AsyncObject. Constructor
has the same parameters as corresponding async call has except callback, we
don’t need to pass it there. Every of these parameters might be or not an
AsyncObject.

Then we need to define async call, so it must return fs.read. It’s also
possible to write this definition in the explicit way:

22

asyncCall () {

return (fd, buffer, offset, length, position, callback) => {

return fs.read(

fd, buffer, offset, length, position, callback

)

}

}

Unlike in the constructor here parameters fd, buffer, offset, length,
position are definitely ready results(not async objects), so it’s possible to use
them in the procedural style. Also you need a callback parameter here, because
it’s needed for the async call.

In the method onResult (that handles the same result that callback of the
async call provides) we return buffer. So, it means that this async object
represents buffer.

8.2 For sync call

Let’s now consider a sync variation of the fs.read. It’s a sync method
fs.readSync. It has similar signature that fs.read has:

fs.readSync(fd, buffer, offset, length, position)

This sync call returns bytesRead and it changes buffer that has been passed
there. So, we have following implementation:

// Represented result is buffer

class ReadBufferByFDSync extends AsyncObject {

constructor (fd, buffer, offset, length, position) {

super(fd, buffer, offset, length, position)

}

syncCall () {

return (fd, buffer, offset, length, position) => {

fs.readSync(fd, buffer, offset, length, position)

return buffer

}

}

}

Here we must use explicit definition of the sync call in the syncCall method,
because we need to return buffer. And we don’t need to a callback because it’s
a synchronous operation. Here we don’t need to override onResult method,
because we override here the sync call that returns what we need.

23

8.3 Why don’t use SyncObject abstraction for the sync
calls?

Two reasons. First of them is technical: it’s just easier to implement
AsyncObject that can wrap either sync or async call.

Second reason is logical: although AsyncObject can wrap sync call, it might
require parameters that have been retrieved from the asynchronous operations,
so it means that this async object actually has asynchronous nature, because it
can be invoked only after some async operations.

More over, even if AsyncObject wraps sync call it belongs to some AsyncTree
or async composition.

9 How to create an Event

Let’s say we have a ReadStream and we need to be able to attach a ’open’
event to it. So, we need to create an async object ReadStreamWithOpenEvent

that represents ReadStream with attached ’open’ event.

// Represented result is a ReadStream

class ReadStreamWithOpenEvent extends AsyncObject {

/*

event is an Event with body(fd)

*/

constructor(readStream, event) {

super(readStream, event)

}

syncCall () {

return (readStream, event) => {

readStream.on('open', event)

return readStream

}

}

}

Actually readStream with ’open’ event has the following signature:

readStream.on('open', (fd) => {

// here we work with fd

})

So, OpenEvent would be:

class OpenEvent extends Event {

constructor() {

super ()

}

24

body (fd) {

// here we work with fd

}

}

As you can see body use the same arguments as the event of the readStream.
So, in the composition it would look something like this:

new ReadStreamWithOpenEvent(

new CreatedSomeHowReadStream(), new OpenEvent()

).call()

The main problem of Event is that it cannot encapsulate async objects,
because it’s being replaced by corresponding function(which is actually
body) in a moment of construction of the async tree that contains this event.
So, if you want use an event that can be constructed by async objects you can
simply create AsyncObject that represents a function that is the body of the
event:

class OpenEvent extends AsyncObject {

constructor (...asyncObjects) {

super(...asyncObjects)

}

syncCall () {

return (...resultsFromAsyncObjects) => {

// This is body of the event

return (fd) => {

/* now you can use here not only fd but also

...resultsFromAsyncObjects */

}

}

}

}

And now the composition of objects would look something like this:

new ReadStreamWithOpenEvent(

new CreatedSomeHowReadStream(),

new OpenEvent(

new SomeAsyncParameter()

)

).call()

25

10 Example of using the sequence of async com-
positions and cache mechanism

Let’s consider following async object:

class MaxNum extends AsyncObject {

constructor (...args) {

super(...args)

}

syncCall () {

return (...args) => {

return Math.max(...args)

}

}

}

MaxNum represent the max of the specified numbers.
And we have async object that wraps assert.strictEqual function that

asserts that two numbers are equal:

class StrictEqualAssertion extends AsyncObject {

constructor (actual, expected) {

super(actual, expected)

}

syncCall () {

return (actual, expected) => {

assert.strictEqual(actual, expected)

return actual

}

}

}

So, let’s have some fun:

new MaxNum(

new MaxNum(1, 2, 4).as('max1'), 5,

new MaxNum(

new MaxNum(4, new MaxNum(3, 4, 6)).as('max2'), 7, 8

).as('max3')

).after(

new StrictEqualAssertion(

new MaxNum(as('max1'), as('max2'), as('max3')), 8

)

)

It’s a silly example but it shows the power of the Async Tree Pattern.

26

11 Conclusion

Async Tree Pattern is very useful design pattern if you care about readabil-
ity and beauty of your code. It allows to describe the whole program as a tree
that contains a lot of little independent pieces, each of them is responsible for
something little functionality. So, the whole conception satisfies single respon-
sibility principle. Async tree allows to hide the details of how a program works
under the cute declarative composition, which is easy to read and maintain.

In this work it’s been shown and described how to implement and use Async
Tree Pattern. Actually, you don’t need to implement this pattern by yourself,
it’s available in the Cutie library(link on this library is in the References
section).

12 References

References

[1] Cutie library,
https://github.com/Guseyn/cutie

[2] Async Objects Instead of Async Calls,
https://guseyn.com/posts/async-objects-instead-of-async-calls?v=1.0.204

[3] Why I Don’t Use Promises and Async/Await Abstractions in Node,
https://guseyn.com/posts/why-i-dont-use-promises-and-async-await?v=1.0.204

27

Contents

1 Introduction 1

2 Declarative vs Imperative 1

3 Composition of async objects 2

4 Asynchronous environment and callback hell 2

5 Features of the Async Tree Pattern 3
5.1 Flexibility . 3
5.2 Events . 4
5.3 Sequence of the async compositions 5
5.4 Cache mechanism . 5

6 Implementation of the Async Tree 6
6.1 How it works . 6

7 Program implementation 8
7.1 AsyncObject . 8

7.1.1 Methods for implementing 9
7.1.2 Methods from public API 10
7.1.3 Internal methods (not for overriding) 11

7.2 AsyncTree . 13
7.2.1 Constructor . 13
7.2.2 Public methods . 13
7.2.3 Private methods . 14

7.3 TreeNode . 15
7.3.1 Constructor . 15
7.3.2 Methods for implementation 15
7.3.3 Internal functionality (not for overriding) 16

7.4 AsyncTreeNode . 16
7.4.1 Constructor . 16
7.4.2 Public methods . 17
7.4.3 Private methods . 18

7.5 SimpleTreeNode . 20
7.5.1 Constructor . 20
7.5.2 Public methods . 20

7.6 NotDefinedAsyncTreeNode . 20
7.7 Event . 21
7.8 As . 21

7.8.1 Implementation . 21

28

8 How to create AsyncObject 22
8.1 For async call . 22
8.2 For sync call . 23
8.3 Why don’t use SyncObject abstraction for the sync calls? 24

9 How to create an Event 24

10 Example of using the sequence of async compositions and cache
mechanism 26

11 Conclusion 27

12 References 27

29

	Introduction
	Declarative vs Imperative
	Composition of async objects
	Asynchronous environment and callback hell
	Features of the Async Tree Pattern
	Flexibility
	Events
	Sequence of the async compositions
	Cache mechanism

	Implementation of the Async Tree
	How it works

	Program implementation
	AsyncObject
	Methods for implementing
	Methods from public API
	Internal methods (not for overriding)

	AsyncTree
	Constructor
	Public methods
	Private methods

	TreeNode
	Constructor
	Methods for implementation
	Internal functionality (not for overriding)

	AsyncTreeNode
	Constructor
	Public methods
	Private methods

	SimpleTreeNode
	Constructor
	Public methods

	NotDefinedAsyncTreeNode
	Event
	As
	Implementation

	How to create AsyncObject
	For async call
	For sync call
	Why don't use SyncObject abstraction for the sync calls?

	How to create an Event
	Example of using the sequence of async compositions and cache mechanism
	Conclusion
	References

